Compare commits
No commits in common. "9b85fdb45603dd2ea111813ea9e6042c6ea536e9" and "25ce4427e65486e0a9f189919319543ad0f5233c" have entirely different histories.
9b85fdb456
...
25ce4427e6
10 changed files with 36 additions and 332 deletions
|
@ -2,17 +2,17 @@
|
|||
|
||||
Extremely basic live stream server
|
||||
|
||||
Currently implements a degraded subset of RTMP and SRT for ingest. Encryption for SRT is implemented with AES-CTR with hardcoded passphrase "srttestpass". Only 16-byte keys have been tested, but nothing should stop the implementation from having problems in principle
|
||||
Currently implements a degraded subset of RTMP and SRT (un-encrypted) for ingest.
|
||||
|
||||
Uses the std lib http server implementation for the http serving side.
|
||||
|
||||
**Not intended for actual use**. The stream key use is not secure and is used to handle directories without a user db system, than to provide auth. Same goes for the SRT passphrase. Also just accepts connections so will get DDOS'd immediately.
|
||||
**Not intended for actual use**. The stream key use is not secure and is used to handle directories without a user db system, than to provide auth
|
||||
|
||||
Limits to a single stream at a time, mostly for the lack of db to handle connections and user information rather than concurrency problems.
|
||||
|
||||
Currently always transcodes to vp9 + opus, segments to fragmented mp4. Creates one segment playlist, no manifest. Uses ffmpeg
|
||||
|
||||
HTTP streaming relies on hls-player-js. Will be broken for standard hls players until I figure out how to modify the `EXT-X-MAP:URI` field to prepend a path prefix without changing directories. Or finish the transcoder project
|
||||
HTTP streaming relies on hls-player-js. Will be broken for standard hls players until I figure out how to modify the `EXT-X-MAP:URI` field to prepend a path prefix without changing directories.
|
||||
|
||||
Currently produces no logs nor debug info. Will just abandon a connection if there is a problem. Will not send any RTMP replies since flash server docs seem dead and abort messages are netStream commands.
|
||||
|
||||
|
|
14
main.go
14
main.go
|
@ -4,25 +4,19 @@ import (
|
|||
"stream_server/rtmp"
|
||||
"stream_server/http"
|
||||
"stream_server/srt"
|
||||
"flag"
|
||||
)
|
||||
|
||||
const (
|
||||
SRVTYPE_RTMP uint = iota
|
||||
SRVTYPE_RTMP uint8 = iota
|
||||
SRVTYPE_SRT
|
||||
)
|
||||
|
||||
func main() {
|
||||
ingest_type := flag.Uint("ingest_type", 0, "Ingest server type, 0 for RTMP, 1 for SRT")
|
||||
ingest_port := flag.String("ingest_port", "7878", "Port for stream intake")
|
||||
http_port := flag.String("http_port", "7879", "Port to serve http requests")
|
||||
|
||||
flag.Parse()
|
||||
err := NewIngestServer(*ingest_type, *ingest_port)
|
||||
err := NewIngestServer(SRVTYPE_SRT, "7878")
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
err = NewHTTPServer(*http_port)
|
||||
err = NewHTTPServer("7879")
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
@ -30,7 +24,7 @@ func main() {
|
|||
}
|
||||
}
|
||||
|
||||
func NewIngestServer(srvr_type uint, port string) (error) {
|
||||
func NewIngestServer(srvr_type uint8, port string) (error) {
|
||||
var err error
|
||||
switch srvr_type {
|
||||
case 0:
|
||||
|
|
167
srt/crypt.go
167
srt/crypt.go
|
@ -1,167 +0,0 @@
|
|||
package srt
|
||||
|
||||
import (
|
||||
"crypto/aes"
|
||||
"crypto/sha1"
|
||||
"crypto/hmac"
|
||||
"hash"
|
||||
"math"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"crypto/cipher"
|
||||
)
|
||||
|
||||
type CryptHandler struct {
|
||||
salt [16]byte
|
||||
key_len uint8
|
||||
odd_sek cipher.Block
|
||||
even_sek cipher.Block
|
||||
}
|
||||
|
||||
// init will apply to KM message immediately
|
||||
func NewCryptHandler(passphrase string, km_msg *KMMSG) (*CryptHandler) {
|
||||
crypt := new(CryptHandler)
|
||||
crypt.key_len = km_msg.key_len
|
||||
crypt.salt = km_msg.salt
|
||||
ok := crypt.Unwrap(km_msg.wrapped_key, passphrase, km_msg.key_type)
|
||||
if !ok {
|
||||
return nil
|
||||
}
|
||||
return crypt
|
||||
}
|
||||
|
||||
// PRF as defined in RFC 8018
|
||||
func PRF(h hash.Hash, input []byte) ([]byte) {
|
||||
h.Reset()
|
||||
h.Write(input)
|
||||
return h.Sum(nil)
|
||||
}
|
||||
|
||||
// gets KEK from passphrase and salt according to fixed SRT iterations and algo from RFC doc
|
||||
// see RFC 8018 for implementation details
|
||||
func SRT_PBKDF2(passphrase string, salt []byte, dklen uint8) ([]byte) {
|
||||
prf := hmac.New(sha1.New, []byte(passphrase))
|
||||
hlen := prf.Size()
|
||||
l := int(math.Ceil(float64(dklen) / float64(hlen)))
|
||||
r := int(dklen) - (l - 1) * hlen
|
||||
|
||||
key := make([]byte, 0)
|
||||
for block := 1; block <= l; block++ {
|
||||
U := make([]byte, hlen)
|
||||
T := make([]byte, hlen)
|
||||
|
||||
block_i := make([]byte, 4)
|
||||
binary.BigEndian.PutUint32(block_i, uint32(block))
|
||||
U = PRF(prf, append(salt, block_i...))
|
||||
copy(T, U)
|
||||
// skip one iter since done above
|
||||
for n := 1; n < 2048; n++ {
|
||||
U = PRF(prf, U)
|
||||
for x := range T {
|
||||
T[x] ^= U[x]
|
||||
}
|
||||
}
|
||||
// final block may not use entire SHA output, still need full during computation
|
||||
if block == l {
|
||||
T = T[:r]
|
||||
}
|
||||
// final key is appended sequence of all blocks computed independently
|
||||
key = append(key, T...)
|
||||
}
|
||||
return key
|
||||
}
|
||||
|
||||
// See RFC 3394, inplace implementation
|
||||
func AES_UNWRAP(key []byte, wrapped []byte) ([]byte, error) {
|
||||
seks := make([]byte, 0) // bytes past IV
|
||||
cipher, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
return seks, err
|
||||
}
|
||||
A := wrapped[:8] // IV bytes
|
||||
n := len(wrapped) / 8 - 1
|
||||
R := make([][]byte, n) // actual message (SEKs)
|
||||
for i := range R {
|
||||
R[i] = wrapped[(i + 1) * 8: (i + 2) * 8]
|
||||
}
|
||||
|
||||
for j := 5; j >= 0; j-- {
|
||||
for i := n; i > 0; i-- {
|
||||
t := make([]byte, 8)
|
||||
binary.BigEndian.PutUint64(t, uint64(n * j + i))
|
||||
for k := range t {
|
||||
t[k] ^= A[k]
|
||||
}
|
||||
B := make([]byte, 16)
|
||||
cipher.Decrypt(B, append(t, R[i - 1]...))
|
||||
copy(A, B[:8])
|
||||
copy(R[i - 1], B[8:])
|
||||
}
|
||||
}
|
||||
|
||||
// SRT uses default IV, 8 repeating bytes of 0xa6 prepended in wrap, check if
|
||||
// preserved in unwrap
|
||||
for i := range A {
|
||||
if A[i] != 0xa6 {
|
||||
return seks, errors.New("IV not default")
|
||||
}
|
||||
}
|
||||
// R is 8 byte blocks, keys can be 16-32 bytes, prepend all together and
|
||||
// let wrappers figure it out
|
||||
for _, v := range R {
|
||||
seks = append(seks, v...)
|
||||
}
|
||||
return seks, nil
|
||||
}
|
||||
|
||||
// unwrap and store SEK ciphers, key_type defined as KK 2-bit value in Key Material from SRT docs
|
||||
func (crypt *CryptHandler) Unwrap(wrapped_key []byte, passphrase string, key_type uint8) (bool) {
|
||||
kek := SRT_PBKDF2(passphrase, crypt.salt[8:], crypt.key_len)
|
||||
// need a copy since original will be sent back
|
||||
wrapped_copy := make([]byte, len(wrapped_key))
|
||||
copy(wrapped_copy, wrapped_key)
|
||||
seks, err := AES_UNWRAP(kek, wrapped_copy)
|
||||
// either unwrap fails or key len does not match expected (1 or 2 SEKs len identical)
|
||||
if err != nil || len(seks) % int(crypt.key_len) != 0 {
|
||||
return false
|
||||
}
|
||||
// always have one SEK, if more bytes (second key) and peer did not send 2 keys
|
||||
// something is wrong
|
||||
sek_1 := seks[:crypt.key_len]
|
||||
if len(seks) > int(crypt.key_len) && key_type != 3 {
|
||||
return false
|
||||
}
|
||||
switch key_type {
|
||||
case 1:
|
||||
crypt.even_sek, _ = aes.NewCipher(sek_1)
|
||||
case 2:
|
||||
crypt.odd_sek, _ = aes.NewCipher(sek_1)
|
||||
case 3:
|
||||
sek_2 := seks[crypt.key_len:]
|
||||
crypt.even_sek, _ = aes.NewCipher(sek_1)
|
||||
crypt.odd_sek, _ = aes.NewCipher(sek_2)
|
||||
default:
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func (crypt *CryptHandler) Decrypt(pkt *Packet) {
|
||||
var sek cipher.Block
|
||||
switch pkt.header_info.(*DataHeader).msg_flags & 0x6 {
|
||||
case 2:
|
||||
sek = crypt.even_sek
|
||||
case 4:
|
||||
sek = crypt.odd_sek
|
||||
default:
|
||||
return
|
||||
}
|
||||
|
||||
IV := make([]byte, crypt.key_len)
|
||||
binary.BigEndian.PutUint32(IV[10:14], pkt.header_info.(*DataHeader).seq_num)
|
||||
for i := 0; i < 14; i++ {
|
||||
IV[i] ^= crypt.salt[i]
|
||||
}
|
||||
ctr := cipher.NewCTR(sek, IV)
|
||||
ctr.XORKeyStream(pkt.cif.([]byte), pkt.cif.([]byte))
|
||||
}
|
|
@ -13,20 +13,12 @@ type Datum struct {
|
|||
next *Datum
|
||||
}
|
||||
|
||||
// linked chain of datums, specifically to store continuous segments
|
||||
// when a packet is missed, start and end can be used to generate lost
|
||||
// packet reports, and easily link when missing is received
|
||||
// 1..2..3..4 6..7..8..9
|
||||
// chain_1 chain_2
|
||||
// nack: get 5
|
||||
type DatumLink struct {
|
||||
queued int // remove eventually, was to be used for ACK recv rate calcs, not needed
|
||||
queued int
|
||||
root *Datum
|
||||
end *Datum
|
||||
}
|
||||
|
||||
// data type and function to allow sorting so order can be ignored during
|
||||
// linking since each is sequential on outset
|
||||
type chains []*DatumLink
|
||||
|
||||
func (c chains) Len() (int) {
|
||||
|
@ -37,7 +29,6 @@ func (c chains) Swap(i, j int) {
|
|||
c[i], c[j] = c[j], c[i]
|
||||
}
|
||||
|
||||
// chain_1 is less then chain_2 when chain_1 ends before chain_2 starts
|
||||
func (c chains) Less(i, j int) (bool) {
|
||||
x_1 := c[i].end.seq_num
|
||||
x_2 := c[j].root.seq_num
|
||||
|
@ -52,7 +43,6 @@ type DatumStorage struct {
|
|||
offshoots chains
|
||||
}
|
||||
|
||||
// append new packet to end of buffer
|
||||
func (buffer *DatumLink) NewDatum(pkt *Packet) {
|
||||
datum := new(Datum)
|
||||
datum.seq_num = pkt.header_info.(*DataHeader).seq_num
|
||||
|
@ -63,7 +53,6 @@ func (buffer *DatumLink) NewDatum(pkt *Packet) {
|
|||
buffer.end = datum
|
||||
}
|
||||
|
||||
// create a new datumlink with root and end at the given packet
|
||||
func NewDatumLink(pkt *Packet) (*DatumLink) {
|
||||
buffer := new(DatumLink)
|
||||
root_datum := new(Datum)
|
||||
|
@ -77,14 +66,12 @@ func NewDatumLink(pkt *Packet) (*DatumLink) {
|
|||
return buffer
|
||||
}
|
||||
|
||||
// initialize storage with the given data packet, in the main chain
|
||||
func NewDatumStorage(packet *Packet) (*DatumStorage) {
|
||||
storage := new(DatumStorage)
|
||||
storage.main = NewDatumLink(packet)
|
||||
return storage
|
||||
}
|
||||
|
||||
// purge all packets in the main chain except the last for future linkage
|
||||
func (storage *DatumStorage) Expunge(output io.WriteCloser) (error) {
|
||||
curr_datum := storage.main.root
|
||||
seq_num_end := storage.main.end.seq_num
|
||||
|
@ -99,7 +86,6 @@ func (storage *DatumStorage) Expunge(output io.WriteCloser) (error) {
|
|||
return nil
|
||||
}
|
||||
|
||||
// check if the given sequence number should already be inside the given buffer
|
||||
func (buffer *DatumLink) Holds(new_seq_num uint32) (bool) {
|
||||
start := buffer.root.seq_num
|
||||
end := buffer.end.seq_num
|
||||
|
@ -112,8 +98,6 @@ func (buffer *DatumLink) Holds(new_seq_num uint32) (bool) {
|
|||
return true
|
||||
}
|
||||
|
||||
// check if the given seq num lies before the given buffer starts
|
||||
// buffer is After seq num?
|
||||
func (buffer *DatumLink) After(new_seq_num uint32) (bool) {
|
||||
start := buffer.root.seq_num
|
||||
if serial_less(new_seq_num, start, 31) {
|
||||
|
@ -122,8 +106,6 @@ func (buffer *DatumLink) After(new_seq_num uint32) (bool) {
|
|||
return false
|
||||
}
|
||||
|
||||
// check if the given seq num lies after the given buffer starts
|
||||
// buffer is Before seq num?
|
||||
func (buffer *DatumLink) Before(new_seq_num uint32) (bool) {
|
||||
end := buffer.end.seq_num
|
||||
if serial_less(end, new_seq_num, 31) {
|
||||
|
@ -132,7 +114,6 @@ func (buffer *DatumLink) Before(new_seq_num uint32) (bool) {
|
|||
return false
|
||||
}
|
||||
|
||||
// add the given packet to the appropriate buffer or add a new offshoot buffer
|
||||
func (storage *DatumStorage) NewDatum(pkt *Packet) {
|
||||
new_pkt_num := pkt.header_info.(*DataHeader).seq_num
|
||||
prev_num := (new_pkt_num - 1) % uint32(1 << 31)
|
||||
|
@ -158,16 +139,12 @@ func (storage *DatumStorage) NewDatum(pkt *Packet) {
|
|||
}
|
||||
}
|
||||
|
||||
// Link 2 buffers to each other
|
||||
func (buffer *DatumLink) Link(buffer_next *DatumLink) {
|
||||
buffer.end.next = buffer_next.root
|
||||
buffer.end = buffer_next.end
|
||||
buffer.queued += buffer_next.queued
|
||||
}
|
||||
|
||||
// check if the start of the buffer_next is sequentially next to the end of buffer
|
||||
// or it is too late to get the true next packets to link and the packets must be linked
|
||||
// given a 31-bit wrap around
|
||||
func check_append_serial_next(buffer *DatumLink, buffer_next *DatumLink, curr_time uint32) (bool) {
|
||||
seq_1 := buffer.end.seq_num
|
||||
seq_2 := (seq_1 + 1) % uint32(math.Pow(2, 31))
|
||||
|
@ -178,7 +155,6 @@ func check_append_serial_next(buffer *DatumLink, buffer_next *DatumLink, curr_ti
|
|||
return false
|
||||
}
|
||||
|
||||
// Given the current storage state, check what packets need to added to fully link main
|
||||
func (storage *DatumStorage) GenNACKCIF() (*NACKCIF, bool) {
|
||||
if len(storage.offshoots) == 0 {
|
||||
return nil, false
|
||||
|
@ -197,14 +173,13 @@ func (storage *DatumStorage) GenNACKCIF() (*NACKCIF, bool) {
|
|||
return cif, true
|
||||
}
|
||||
|
||||
// Try to relink all chains wherever possible or necessary due to TLPKTDROP
|
||||
func (storage *DatumStorage) Relink(curr_time uint32) {
|
||||
sort.Sort(storage.offshoots)
|
||||
buffer := storage.main
|
||||
i := 0
|
||||
for i < len(storage.offshoots) {
|
||||
if check_append_serial_next(buffer, storage.offshoots[i], curr_time) {
|
||||
storage.offshoots = append(storage.offshoots[:i], storage.offshoots[i + 1:]...) // nuke the chain since it is not needed anymore
|
||||
storage.offshoots = append(storage.offshoots[:i], storage.offshoots[i + 1:]...)
|
||||
} else {
|
||||
buffer = storage.offshoots[i]
|
||||
i++
|
||||
|
@ -212,7 +187,6 @@ func (storage *DatumStorage) Relink(curr_time uint32) {
|
|||
}
|
||||
}
|
||||
|
||||
// check if a is less than b under serial arithmetic (modulo operations)
|
||||
func serial_less(a uint32, b uint32, bits int) (bool) {
|
||||
if (a < b && b-a < (1 << (bits - 1))) || (a > b && a-b > (1 << (bits - 1))) {
|
||||
return true
|
||||
|
|
|
@ -15,7 +15,7 @@ func NewIntake(l net.PacketConn, max_conns int) (*Intake) {
|
|||
intake := new(Intake)
|
||||
intake.max_conns = max_conns
|
||||
intake.tunnels = make([]*Tunnel, 0)
|
||||
intake.buffer = make([]byte, 1500) // each packet is restricted to a max size of 1500
|
||||
intake.buffer = make([]byte, 1500)
|
||||
intake.socket = l
|
||||
|
||||
return intake
|
||||
|
@ -26,9 +26,9 @@ func (intake *Intake) NewTunnel(l net.PacketConn, peer net.Addr) (*Tunnel) {
|
|||
tunnel := new(Tunnel)
|
||||
tunnel.socket = l
|
||||
tunnel.peer = peer
|
||||
tunnel.queue = make(chan []byte, 10) // packet buffer, will cause packet loss if low
|
||||
tunnel.queue = make(chan []byte, 10)
|
||||
intake.tunnels = append(intake.tunnels, tunnel)
|
||||
go tunnel.Start() // start the tunnel SRT processing
|
||||
go tunnel.Start()
|
||||
return tunnel
|
||||
}
|
||||
return nil
|
||||
|
@ -37,7 +37,6 @@ func (intake *Intake) NewTunnel(l net.PacketConn, peer net.Addr) (*Tunnel) {
|
|||
func (intake *Intake) get_tunnel(peer net.Addr) (*Tunnel) {
|
||||
var tunnel *Tunnel
|
||||
for i := 0; i < len(intake.tunnels); i++ {
|
||||
// check if tunnels are broken and remove
|
||||
if intake.tunnels[i].broken {
|
||||
intake.tunnels[i].Shutdown()
|
||||
intake.tunnels = append(intake.tunnels[:i], intake.tunnels[i+1:]...)
|
||||
|
@ -48,9 +47,6 @@ func (intake *Intake) get_tunnel(peer net.Addr) (*Tunnel) {
|
|||
tunnel = intake.tunnels[i]
|
||||
}
|
||||
}
|
||||
// if no tunnel was found, make one
|
||||
// should be after conclusion handshake, but wanted to keep all protocol
|
||||
// related actions separate from UDP handling
|
||||
if tunnel == nil {
|
||||
tunnel = intake.NewTunnel(intake.socket, peer)
|
||||
}
|
||||
|
@ -62,16 +58,14 @@ func (intake *Intake) get_tunnel(peer net.Addr) (*Tunnel) {
|
|||
func (intake *Intake) Read() {
|
||||
n, peer, err := intake.socket.ReadFrom(intake.buffer)
|
||||
if err != nil {
|
||||
return // ignore UDP errors
|
||||
return
|
||||
}
|
||||
// find the SRT/UDT tunnel corresponding to the given peer
|
||||
tunnel := intake.get_tunnel(peer)
|
||||
if tunnel == nil {
|
||||
return
|
||||
}
|
||||
pkt := make([]byte, n)
|
||||
copy(pkt, intake.buffer[:n])
|
||||
// send a copy to the corresponding tunnels packet queue if not full
|
||||
select {
|
||||
case tunnel.queue <- pkt:
|
||||
default:
|
||||
|
|
|
@ -5,7 +5,6 @@ import (
|
|||
"encoding/binary"
|
||||
)
|
||||
|
||||
// arbitrary indexing
|
||||
const (
|
||||
DATA uint8 = iota
|
||||
HANDSHAKE
|
||||
|
@ -16,7 +15,6 @@ const (
|
|||
DROP
|
||||
)
|
||||
|
||||
// see SRT protocol RFC for information
|
||||
type ControlHeader struct {
|
||||
ctrl_type uint16
|
||||
ctrl_subtype uint16
|
||||
|
@ -82,12 +80,10 @@ type pckts_range struct {
|
|||
end uint32
|
||||
}
|
||||
|
||||
// should be safe to ignore
|
||||
type DROPCIF struct {
|
||||
to_drop pckts_range
|
||||
}
|
||||
|
||||
// header and cif are interfaces to allow easier typing, fitting above structs
|
||||
type Packet struct {
|
||||
packet_type uint8
|
||||
timestamp uint32
|
||||
|
@ -96,12 +92,11 @@ type Packet struct {
|
|||
cif interface{}
|
||||
}
|
||||
|
||||
// completely pointless since only implementing receiver, here anyway
|
||||
func marshall_data_packet(packet *Packet, header []byte) ([]byte, error) {
|
||||
info, ok_head := packet.header_info.(*DataHeader)
|
||||
data, ok_data := packet.cif.([]byte)
|
||||
if !ok_head || !ok_data {
|
||||
return header, errors.New("data packet does not have data header or data")
|
||||
return header, errors.New("data packet does not have data header")
|
||||
}
|
||||
binary.BigEndian.PutUint32(header[:4], info.seq_num)
|
||||
head2 := (uint32(info.msg_flags) << 26) + info.msg_num
|
||||
|
@ -167,9 +162,6 @@ func marshall_nack_cif(data *NACKCIF) ([]byte) {
|
|||
return loss_list_bytes
|
||||
}
|
||||
|
||||
// locations and length are determined by protocol,
|
||||
// no real point abstracting that
|
||||
// could be cleaner with reflects, but added work for very little real gain
|
||||
func marshall_ack_cif(data *ACKCIF) ([]byte) {
|
||||
cif := make([]byte, 28)
|
||||
binary.BigEndian.PutUint32(cif[:4], data.last_acked)
|
||||
|
@ -183,7 +175,6 @@ func marshall_ack_cif(data *ACKCIF) ([]byte) {
|
|||
return cif
|
||||
}
|
||||
|
||||
// same as above
|
||||
func marshall_hs_cif(data *HandshakeCIF) ([]byte) {
|
||||
cif := make([]byte, 48)
|
||||
binary.BigEndian.PutUint32(cif[:4], data.version)
|
||||
|
@ -210,10 +201,7 @@ func marshall_hs_cif(data *HandshakeCIF) ([]byte) {
|
|||
binary.BigEndian.PutUint16(ext_buff[12:14], contents.recv_delay)
|
||||
binary.BigEndian.PutUint16(ext_buff[14:16], contents.send_delay)
|
||||
case 4:
|
||||
contents, ok := extension.ext_contents.(*KMMSG)
|
||||
if !ok { // handle km_state error
|
||||
copy(ext_buff[4:8], extension.ext_contents.([]byte))
|
||||
} else {
|
||||
contents := extension.ext_contents.(*KMMSG)
|
||||
binary.BigEndian.PutUint32(ext_buff[4:8], uint32(0x12202900) | uint32(contents.key_type))
|
||||
binary.BigEndian.PutUint32(ext_buff[12:16], uint32(0x02000200))
|
||||
binary.BigEndian.PutUint32(ext_buff[16:20], uint32(0x0400) | uint32(contents.key_len / 4))
|
||||
|
@ -221,7 +209,6 @@ func marshall_hs_cif(data *HandshakeCIF) ([]byte) {
|
|||
ext_buff[20 + i] = contents.salt[i]
|
||||
}
|
||||
copy(ext_buff[36:], contents.wrapped_key)
|
||||
}
|
||||
default:
|
||||
copy(ext_buff[4:], extension.ext_contents.([]byte))
|
||||
}
|
||||
|
@ -244,7 +231,7 @@ func MarshallPacket(packet *Packet, agent *SRTManager) ([]byte, error) {
|
|||
func parse_data_packet(pkt *Packet, buffer []byte) (error) {
|
||||
info := new(DataHeader)
|
||||
info.seq_num = binary.BigEndian.Uint32(buffer[:4])
|
||||
info.msg_flags = buffer[4] >> 2 // unsused since live streaming makes it irrelevant, kk for encrypt eventually
|
||||
info.msg_flags = buffer[4] >> 2
|
||||
info.msg_num = binary.BigEndian.Uint32(buffer[4:8]) & 0x03ffffff
|
||||
|
||||
pkt.header_info = info
|
||||
|
@ -320,14 +307,13 @@ func parse_hs_cif(cif *HandshakeCIF, buffer []byte) (error) {
|
|||
case 3:
|
||||
content := new(KMMSG)
|
||||
content.key_type = extensions[7] & 0x3
|
||||
content.key_len = extensions[19] * 4
|
||||
for i := 0; i < 16; i++ {
|
||||
content.key_len = extensions[19]
|
||||
for i := 0; i < 4; i++ {
|
||||
content.salt[i] = extensions[20 + i]
|
||||
}
|
||||
// -36 from actual content len, extensions includes headers as well
|
||||
wrap_key_len := 4 + ext.ext_len - 36
|
||||
wrap_key_len := 4 + ext.ext_len - 24
|
||||
content.wrapped_key = make([]byte, wrap_key_len)
|
||||
copy(content.wrapped_key, extensions[36:36 + wrap_key_len])
|
||||
copy(content.wrapped_key, extensions[24:24 + wrap_key_len])
|
||||
ext.ext_contents = content
|
||||
default:
|
||||
content := make([]byte, ext.ext_len)
|
||||
|
|
|
@ -18,7 +18,6 @@ const (
|
|||
)
|
||||
|
||||
type SRTManager struct {
|
||||
crypt *CryptHandler
|
||||
state uint8
|
||||
init time.Time
|
||||
syn_cookie uint32
|
||||
|
@ -40,12 +39,11 @@ func NewSRTManager(l net.PacketConn) (*SRTManager) {
|
|||
agent := new(SRTManager)
|
||||
agent.init = time.Now()
|
||||
agent.socket = l
|
||||
agent.bw = 15000 // in pkts (mtu bytes) per second
|
||||
agent.bw = 15000
|
||||
agent.mtu = 1500
|
||||
return agent
|
||||
}
|
||||
|
||||
// adds basic information present in all packets, timestamp and destination SRT socket
|
||||
func (agent *SRTManager) create_basic_header() (*Packet) {
|
||||
packet := new(Packet)
|
||||
packet.timestamp = uint32(time.Now().Sub(agent.init).Microseconds())
|
||||
|
@ -76,7 +74,6 @@ func (agent *SRTManager) create_induction_resp() (*Packet) {
|
|||
|
||||
packet.cif = cif
|
||||
|
||||
// use the handshake as a placeholder ack-ackack rtt initializer
|
||||
var init_ping_time [2]time.Time
|
||||
init_ping_time[0] = time.Now()
|
||||
agent.pings = append(agent.pings, init_ping_time)
|
||||
|
@ -84,7 +81,6 @@ func (agent *SRTManager) create_induction_resp() (*Packet) {
|
|||
return packet
|
||||
}
|
||||
|
||||
// not ideal, but works
|
||||
func (agent *SRTManager) make_syn_cookie(peer net.Addr) {
|
||||
t := uint32(time.Now().Unix()) >> 6
|
||||
s := sha256.New()
|
||||
|
@ -116,7 +112,7 @@ func (agent *SRTManager) create_conclusion_resp() (*Packet) {
|
|||
|
||||
cif := new(HandshakeCIF)
|
||||
cif.version = 5
|
||||
cif.ext_field = 0x1 // 1 for HS-ext, does not allow encryption currently
|
||||
cif.ext_field = 0x1
|
||||
cif.sock_id = 1
|
||||
cif.mtu = agent.mtu
|
||||
cif.max_flow = 8192
|
||||
|
@ -149,44 +145,20 @@ func (agent *SRTManager) process_conclusion(packet *Packet) (*Packet) {
|
|||
hs_cif := packet.cif.(*HandshakeCIF)
|
||||
if hs_cif.hs_type == 0xffffffff && hs_cif.syn_cookie == agent.syn_cookie {
|
||||
for _, v := range hs_cif.hs_extensions {
|
||||
// force client to add a stream_id for output location
|
||||
// to do: add encryption handling
|
||||
switch v.ext_type {
|
||||
case 5:
|
||||
writer, stream_key, ok := CheckStreamID(v.ext_contents.([]byte))
|
||||
agent.stream_key = stream_key
|
||||
if !ok {
|
||||
resp_packet.cif.(*HandshakeCIF).hs_type = 1003
|
||||
agent.state = 3
|
||||
return resp_packet
|
||||
} else {
|
||||
agent.output = writer
|
||||
CleanFiles(agent.stream_key, 0)
|
||||
}
|
||||
case 3:
|
||||
resp_packet.cif.(*HandshakeCIF).ext_field = 3
|
||||
// passphrase harcoded for testing, should pass in somehow with a user management system
|
||||
crypt_handler := NewCryptHandler("srttestpass", v.ext_contents.(*KMMSG))
|
||||
if crypt_handler == nil { // if sek unwrap required but fails
|
||||
agent.state = 3
|
||||
resp_packet.cif.(*HandshakeCIF).hs_type = 1010
|
||||
resp_ext := new(HandshakeExtension)
|
||||
resp_ext.ext_type = 4
|
||||
resp_ext.ext_len = 4
|
||||
km_state := make([]byte, 4)
|
||||
km_state[3] = 4 // BADSECRET code
|
||||
resp_ext.ext_contents = km_state
|
||||
resp_packet.cif.(*HandshakeCIF).hs_extensions = append(resp_packet.cif.(*HandshakeCIF).hs_extensions, resp_ext)
|
||||
return resp_packet
|
||||
}
|
||||
// else return since needed
|
||||
resp_packet.cif.(*HandshakeCIF).hs_extensions = append(resp_packet.cif.(*HandshakeCIF).hs_extensions, v)
|
||||
v.ext_type = 4
|
||||
agent.crypt = crypt_handler
|
||||
}
|
||||
}
|
||||
agent.pings[0][1] = time.Now()
|
||||
// if output was successfully initialized, proceed with data looping
|
||||
if agent.output != nil {
|
||||
agent.state = DATA_LOOP
|
||||
return resp_packet
|
||||
|
@ -208,13 +180,9 @@ func (agent *SRTManager) create_ack_report() (*Packet) {
|
|||
packet.header_info = info
|
||||
|
||||
cif := new(ACKCIF)
|
||||
// main has the latest unbroken chain, either no other packets, or
|
||||
// missing packet which must be nak'd
|
||||
cif.last_acked = agent.storage.main.end.seq_num
|
||||
cif.bw = agent.bw
|
||||
|
||||
// calculate rtt variance from valid ping pairs, use last value as rtt of last
|
||||
// exchange since that's what it is
|
||||
var rtt_sum uint32
|
||||
var rtt_2_sum uint32
|
||||
var rtt uint32
|
||||
|
@ -230,10 +198,7 @@ func (agent *SRTManager) create_ack_report() (*Packet) {
|
|||
cif.rtt = rtt
|
||||
cif.var_rtt = uint32(rtt_2_sum / rtt_n) - uint32(math.Pow(float64(rtt_sum / rtt_n), 2))
|
||||
|
||||
// use the packets received since the last ack report was sent to calc
|
||||
// estimated recv rates
|
||||
cif.pkt_recv_rate = uint32(len(agent.pkt_sizes) * 100)
|
||||
// arbitrary, should use len(channel) to set this but doesn't really seem to matter
|
||||
cif.buff_size = 100
|
||||
var bytes_recvd uint32
|
||||
for _, v := range agent.pkt_sizes {
|
||||
|
@ -245,7 +210,6 @@ func (agent *SRTManager) create_ack_report() (*Packet) {
|
|||
|
||||
var next_ping_pair [2]time.Time
|
||||
next_ping_pair[0] = time.Now()
|
||||
// only keep last 100 acks, use offset for correct ackack ping indexing
|
||||
if len(agent.pings) >= 100 {
|
||||
agent.pings = append(agent.pings[1:], next_ping_pair)
|
||||
agent.ping_offset++
|
||||
|
@ -256,7 +220,6 @@ func (agent *SRTManager) create_ack_report() (*Packet) {
|
|||
return packet
|
||||
}
|
||||
|
||||
// only need the recieve time from ackacks for rtt calcs, ignore otherwise
|
||||
func (agent *SRTManager) handle_ackack(packet *Packet) {
|
||||
ack_num := packet.header_info.(*ControlHeader).tsi
|
||||
agent.pings[int(ack_num) - agent.ping_offset][1] = time.Now()
|
||||
|
@ -280,15 +243,9 @@ func (agent *SRTManager) create_nack_report() (*Packet) {
|
|||
return packet
|
||||
}
|
||||
|
||||
// handling packets during data loop
|
||||
func (agent *SRTManager) process_data(packet *Packet) (*Packet) {
|
||||
switch packet.packet_type {
|
||||
case DATA:
|
||||
// if data, add to storage, linking, etc
|
||||
// then check if ack or nack can be generated (every 10 ms)
|
||||
if agent.crypt != nil {
|
||||
agent.crypt.Decrypt(packet)
|
||||
}
|
||||
agent.handle_data_storage(packet)
|
||||
if time.Now().Sub(agent.pings[len(agent.pings) - 1][0]).Milliseconds() >= 10 {
|
||||
return agent.create_ack_report()
|
||||
|
@ -299,9 +256,7 @@ func (agent *SRTManager) process_data(packet *Packet) (*Packet) {
|
|||
case ACKACK:
|
||||
agent.handle_ackack(packet)
|
||||
case SHUTDOWN:
|
||||
// state 3 should raise error and shutdown tunnel,
|
||||
// for now start cleanup procedure in 10s
|
||||
agent.state = BROKEN
|
||||
agent.state = 3
|
||||
go CleanFiles(agent.stream_key, 10)
|
||||
default:
|
||||
return nil
|
||||
|
@ -310,28 +265,18 @@ func (agent *SRTManager) process_data(packet *Packet) (*Packet) {
|
|||
}
|
||||
|
||||
func (agent *SRTManager) handle_data_storage(packet *Packet) {
|
||||
// data packets always have []byte as "cif"
|
||||
agent.pkt_sizes = append(agent.pkt_sizes, uint32(len(packet.cif.([]byte))))
|
||||
// initialize storage if does not exist, else add where it can
|
||||
if agent.storage == nil {
|
||||
agent.storage = NewDatumStorage(packet)
|
||||
} else {
|
||||
agent.storage.NewDatum(packet)
|
||||
}
|
||||
// attempt to relink any offshoots
|
||||
// timestamp for TLPKTDROP
|
||||
if len(agent.storage.offshoots) != 0 {
|
||||
agent.storage.Relink(packet.timestamp)
|
||||
}
|
||||
// write out all possible packets
|
||||
if err := agent.storage.Expunge(agent.output); err != nil {
|
||||
agent.state = BROKEN
|
||||
}
|
||||
agent.storage.Expunge(agent.output)
|
||||
}
|
||||
|
||||
// determines appropriate packets and responses depending on tunnel state
|
||||
// some need to ignore depending on state, eg
|
||||
// late induction requests during conclusion phase
|
||||
func (agent *SRTManager) Process(packet *Packet) (*Packet, error) {
|
||||
switch agent.state {
|
||||
case INDUCTION:
|
||||
|
|
|
@ -5,8 +5,6 @@ import (
|
|||
"fmt"
|
||||
)
|
||||
|
||||
// main entry point, no concept of tunnels in UDP so need to implement
|
||||
// that separately and cannot simply add a max connlimit here like with RTMP
|
||||
func NewServer(port string) (error) {
|
||||
l, err := net.ListenPacket("udp", ":" + port)
|
||||
if err != nil {
|
||||
|
@ -17,13 +15,12 @@ func NewServer(port string) (error) {
|
|||
}
|
||||
|
||||
func start(l net.PacketConn) {
|
||||
// basic panic logging for debugging mostly
|
||||
defer func() {
|
||||
if r := recover(); r != nil {
|
||||
fmt.Println(r)
|
||||
}
|
||||
}()
|
||||
intake := NewIntake(l, 1) // limit to one concurrent tunnel
|
||||
intake := NewIntake(l, 1)
|
||||
for {
|
||||
intake.Read()
|
||||
}
|
||||
|
|
|
@ -7,9 +7,9 @@ import (
|
|||
"stream_server/transcoder"
|
||||
"time"
|
||||
"path/filepath"
|
||||
"fmt"
|
||||
)
|
||||
|
||||
// spawn a transcoder instance and return its stdin pipe
|
||||
func NewWriter(stream_key string) (io.WriteCloser, error) {
|
||||
transcoder_in, err := transcoder.NewTranscoder(stream_key)
|
||||
if err != nil {
|
||||
|
@ -18,17 +18,11 @@ func NewWriter(stream_key string) (io.WriteCloser, error) {
|
|||
return transcoder_in, nil
|
||||
}
|
||||
|
||||
// check if the init.mp4 segment has been modified in between a given sleep time
|
||||
// if it hasn't (stream disconnected for longer) delete it
|
||||
// else a new stream has started which shouldn't be deleted
|
||||
func CleanFiles(stream_key string, delay time.Duration) {
|
||||
time.Sleep(delay * time.Second)
|
||||
base_dir, _ := os.UserHomeDir()
|
||||
stream_dir := base_dir + "/live/" + stream_key
|
||||
fileinfo, file_ok := os.Stat(stream_dir + "/init.mp4")
|
||||
if file_ok != nil {
|
||||
return
|
||||
}
|
||||
fileinfo, _ := os.Stat(stream_dir + "/init.mp4")
|
||||
if time.Now().Sub(fileinfo.ModTime()) > delay * time.Second {
|
||||
leftover_files, _ := filepath.Glob(stream_dir + "/*")
|
||||
for _, file := range leftover_files {
|
||||
|
@ -37,9 +31,6 @@ func CleanFiles(stream_key string, delay time.Duration) {
|
|||
}
|
||||
}
|
||||
|
||||
// stream_id is in reverse order, len is multiple of 4 padded with 0
|
||||
// get the string, check if corresponding folder exists, then attempt
|
||||
// to spawn a transcoder instance
|
||||
func CheckStreamID(stream_id []byte) (io.WriteCloser, string, bool) {
|
||||
stream_key := make([]byte, 0)
|
||||
for i := len(stream_id) - 1; i >= 0; i-- {
|
||||
|
@ -59,7 +50,6 @@ func CheckStreamID(stream_id []byte) (io.WriteCloser, string, bool) {
|
|||
return nil, stream_key_string, false
|
||||
}
|
||||
|
||||
// checks if folder exists corresponding to the stream_key
|
||||
func check_stream_key(stream_key string) (bool) {
|
||||
base_dir, _ := os.UserHomeDir()
|
||||
if fileinfo, err := os.Stat(base_dir + "/live/" + stream_key); err == nil && fileinfo.IsDir() {
|
||||
|
|
|
@ -19,16 +19,9 @@ func (tunnel *Tunnel) Start() {
|
|||
fmt.Println(r)
|
||||
}
|
||||
*a = true
|
||||
}(&(tunnel.broken)) // force mark tunnel for deletion if any error occurs
|
||||
}(&(tunnel.broken))
|
||||
tunnel.state = NewSRTManager(tunnel.socket)
|
||||
// central tunnel loop, read incoming, process and generate response
|
||||
// write response if any
|
||||
for {
|
||||
// force check since no new packets after shutdown
|
||||
if tunnel.state.state == 3 {
|
||||
tunnel.broken = true
|
||||
break
|
||||
}
|
||||
packet, err := tunnel.ReadPacket()
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
|
@ -45,8 +38,6 @@ func (tunnel *Tunnel) Start() {
|
|||
}
|
||||
}
|
||||
|
||||
// send a shutdown command, for use when tunnel gets broken
|
||||
// not ideal but works
|
||||
func (tunnel *Tunnel) Shutdown() {
|
||||
if tunnel.state != nil && tunnel.state.state > 1 {
|
||||
packet := tunnel.state.create_basic_header()
|
||||
|
@ -72,6 +63,6 @@ func (tunnel *Tunnel) WritePacket(packet *Packet) {
|
|||
}
|
||||
|
||||
func (tunnel *Tunnel) ReadPacket() (*Packet, error) {
|
||||
packet := <- tunnel.queue // blocking read, should add timeout here
|
||||
packet := <- tunnel.queue
|
||||
return ParsePacket(packet)
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue