basic encryption key material handling

This commit is contained in:
Muaz Ahmad 2023-09-23 19:12:46 +05:00
parent c41b00ccfa
commit 15bd8578df
3 changed files with 183 additions and 10 deletions

147
srt/crypt.go Normal file
View file

@ -0,0 +1,147 @@
package srt
import (
"crypto/aes"
"crypto/sha1"
"crypto/hmac"
"hash"
"math"
"encoding/binary"
"errors"
"crypto/cipher"
)
type CryptHandler struct {
salt [16]byte
key_len uint8
odd_sek cipher.Block
even_sek cipher.Block
}
// init will apply to KM message immediately
func NewCryptHandler(passphrase string, km_msg *KMMSG) (*CryptHandler) {
crypt := new(CryptHandler)
crypt.key_len = km_msg.key_len
crypt.salt = km_msg.salt
ok := crypt.Unwrap(km_msg.wrapped_key, passphrase, km_msg.key_type)
if !ok {
return nil
}
return crypt
}
// PRF as defined in RFC 8018
func PRF(h hash.Hash, input []byte) ([]byte) {
h.Reset()
h.Write(input)
return h.Sum(nil)
}
// gets KEK from passphrase and salt according to fixed SRT iterations and algo from RFC doc
// see RFC 8018 for implementation details
func SRT_PBKDF2(passphrase string, salt []byte, dklen uint8) ([]byte) {
prf := hmac.New(sha1.New, []byte(passphrase))
hlen := prf.Size()
l := int(math.Ceil(float64(dklen) / float64(hlen)))
r := int(dklen) - (l - 1) * hlen
key := make([]byte, 0)
for block := 1; block <= l; block++ {
U := make([]byte, hlen)
T := make([]byte, hlen)
block_i := make([]byte, 4)
binary.BigEndian.PutUint32(block_i, uint32(block))
U = PRF(prf, append(salt, block_i...))
copy(T, U)
// skip one iter since done above
for n := 1; n < 2048; n++ {
U = PRF(prf, U)
for x := range T {
T[x] ^= U[x]
}
}
// final block may not use entire SHA output, still need full during computation
if block == l {
T = T[:r]
}
// final key is appended sequence of all blocks computed independently
key = append(key, T...)
}
return key
}
// See RFC 3394, inplace implementation
func AES_UNWRAP(key []byte, wrapped []byte) ([]byte, error) {
seks := make([]byte, 0) // bytes past IV
cipher, err := aes.NewCipher(key)
if err != nil {
return seks, err
}
A := wrapped[:8] // IV bytes
n := len(wrapped) / 8 - 1
R := make([][]byte, n) // actual message (SEKs)
for i := range R {
R[i] = wrapped[(i + 1) * 8: (i + 2) * 8]
}
for j := 5; j >= 0; j-- {
for i := n; i > 0; i-- {
t := make([]byte, 8)
binary.BigEndian.PutUint64(t, uint64(n * j + i))
for k := range t {
t[k] ^= A[k]
}
B := make([]byte, 16)
cipher.Decrypt(B, append(t, R[i - 1]...))
copy(A, B[:8])
copy(R[i - 1], B[8:])
}
}
// SRT uses default IV, 8 repeating bytes of 0xa6 prepended in wrap, check if
// preserved in unwrap
for i := range A {
if A[i] != 0xa6 {
return seks, errors.New("IV not default")
}
}
// R is 8 byte blocks, keys can be 16-32 bytes, prepend all together and
// let wrappers figure it out
for _, v := range R {
seks = append(seks, v...)
}
return seks, nil
}
// unwrap and store SEK ciphers, key_type defined as KK 2-bit value in Key Material from SRT docs
func (crypt *CryptHandler) Unwrap(wrapped_key []byte, passphrase string, key_type uint8) (bool) {
kek := SRT_PBKDF2(passphrase, crypt.salt[8:], crypt.key_len)
// need a copy since original will be sent back
wrapped_copy := make([]byte, len(wrapped_key))
copy(wrapped_copy, wrapped_key)
seks, err := AES_UNWRAP(kek, wrapped_copy)
// either unwrap fails or key len does not match expected (1 or 2 SEKs len identical)
if err != nil || len(seks) % int(crypt.key_len) != 0 {
return false
}
// always have one SEK, if more bytes (second key) and peer did not send 2 keys
// something is wrong
sek_1 := seks[:crypt.key_len]
if len(seks) > int(crypt.key_len) && key_type != 3 {
return false
}
switch key_type {
case 1:
crypt.even_sek, _ = aes.NewCipher(sek_1)
case 2:
crypt.odd_sek, _ = aes.NewCipher(sek_1)
case 3:
sek_2 := seks[crypt.key_len:]
crypt.even_sek, _ = aes.NewCipher(sek_1)
crypt.odd_sek, _ = aes.NewCipher(sek_2)
default:
return false
}
return true
}

View file

@ -210,7 +210,10 @@ func marshall_hs_cif(data *HandshakeCIF) ([]byte) {
binary.BigEndian.PutUint16(ext_buff[12:14], contents.recv_delay) binary.BigEndian.PutUint16(ext_buff[12:14], contents.recv_delay)
binary.BigEndian.PutUint16(ext_buff[14:16], contents.send_delay) binary.BigEndian.PutUint16(ext_buff[14:16], contents.send_delay)
case 4: case 4:
contents := extension.ext_contents.(*KMMSG) contents, ok := extension.ext_contents.(*KMMSG)
if !ok { // handle km_state error
copy(ext_buff[4:8], extension.ext_contents.([]byte))
} else {
binary.BigEndian.PutUint32(ext_buff[4:8], uint32(0x12202900) | uint32(contents.key_type)) binary.BigEndian.PutUint32(ext_buff[4:8], uint32(0x12202900) | uint32(contents.key_type))
binary.BigEndian.PutUint32(ext_buff[12:16], uint32(0x02000200)) binary.BigEndian.PutUint32(ext_buff[12:16], uint32(0x02000200))
binary.BigEndian.PutUint32(ext_buff[16:20], uint32(0x0400) | uint32(contents.key_len / 4)) binary.BigEndian.PutUint32(ext_buff[16:20], uint32(0x0400) | uint32(contents.key_len / 4))
@ -218,6 +221,7 @@ func marshall_hs_cif(data *HandshakeCIF) ([]byte) {
ext_buff[20 + i] = contents.salt[i] ext_buff[20 + i] = contents.salt[i]
} }
copy(ext_buff[36:], contents.wrapped_key) copy(ext_buff[36:], contents.wrapped_key)
}
default: default:
copy(ext_buff[4:], extension.ext_contents.([]byte)) copy(ext_buff[4:], extension.ext_contents.([]byte))
} }
@ -317,12 +321,13 @@ func parse_hs_cif(cif *HandshakeCIF, buffer []byte) (error) {
content := new(KMMSG) content := new(KMMSG)
content.key_type = extensions[7] & 0x3 content.key_type = extensions[7] & 0x3
content.key_len = extensions[19] * 4 content.key_len = extensions[19] * 4
for i := 0; i < 4; i++ { for i := 0; i < 16; i++ {
content.salt[i] = extensions[20 + i] content.salt[i] = extensions[20 + i]
} }
wrap_key_len := 4 + ext.ext_len - 24 // -36 from actual content len, extensions includes headers as well
wrap_key_len := 4 + ext.ext_len - 36
content.wrapped_key = make([]byte, wrap_key_len) content.wrapped_key = make([]byte, wrap_key_len)
copy(content.wrapped_key, extensions[24:24 + wrap_key_len]) copy(content.wrapped_key, extensions[36:36 + wrap_key_len])
ext.ext_contents = content ext.ext_contents = content
default: default:
content := make([]byte, ext.ext_len) content := make([]byte, ext.ext_len)

View file

@ -18,6 +18,7 @@ const (
) )
type SRTManager struct { type SRTManager struct {
crypt *CryptHandler
state uint8 state uint8
init time.Time init time.Time
syn_cookie uint32 syn_cookie uint32
@ -156,11 +157,31 @@ func (agent *SRTManager) process_conclusion(packet *Packet) (*Packet) {
agent.stream_key = stream_key agent.stream_key = stream_key
if !ok { if !ok {
resp_packet.cif.(*HandshakeCIF).hs_type = 1003 resp_packet.cif.(*HandshakeCIF).hs_type = 1003
agent.state = 3
return resp_packet return resp_packet
} else { } else {
agent.output = writer agent.output = writer
CleanFiles(agent.stream_key, 0) CleanFiles(agent.stream_key, 0)
} }
case 3:
resp_packet.cif.(*HandshakeCIF).ext_field = 3
// passphrase harcoded for testing, should pass in somehow with a user management system
crypt_handler := NewCryptHandler("srttestpass", v.ext_contents.(*KMMSG))
if crypt_handler == nil { // if sek unwrap required but fails
agent.state = 3
resp_packet.cif.(*HandshakeCIF).hs_type = 1010
resp_ext := new(HandshakeExtension)
resp_ext.ext_type = 4
resp_ext.ext_len = 4
km_state := make([]byte, 4)
km_state[3] = 4 // BADSECRET code
resp_ext.ext_contents = km_state
resp_packet.cif.(*HandshakeCIF).hs_extensions = append(resp_packet.cif.(*HandshakeCIF).hs_extensions, resp_ext)
return resp_packet
}
// else return since needed
resp_packet.cif.(*HandshakeCIF).hs_extensions = append(resp_packet.cif.(*HandshakeCIF).hs_extensions, v)
v.ext_type = 4
} }
} }
agent.pings[0][1] = time.Now() agent.pings[0][1] = time.Now()