import json import matplotlib.pyplot as plt import numpy, pandas import requests import sys sst_urls = { "world": "https://climatereanalyzer.org/clim/sst_daily/json/oisst2.1_world2_sst_day.json", "natlan": "https://climatereanalyzer.org/clim/sst_daily/json/oisst2.1_natlan1_sst_day.json" } print(sys.argv[1]) start_range = 29 start_year = 1982 res = requests.get(sst_urls[list(sst_urls)[int(sys.argv[1])]]) data = json.loads(res.text) data = data[1:-3] temps = numpy.array([i['data'] for i in data], numpy.float32).T cols = [i['name'] for i in data] df = pandas.DataFrame(temps, columns = cols) for col in cols: if int(col) % 4 != 0: df[col].iloc[60:] = df[col].iloc[60:].shift(1) mean = df[df.columns[:start_range + 1]].mean(axis=1) sd = df[df.columns[:start_range + 1]].std(axis=1) diffs = pandas.DataFrame(columns = cols, dtype=numpy.float32) for col in cols[start_range:]: diffs[col] = (df[col] - mean) / sd series = diffs.melt().drop('variable', axis=1).rename(columns={'value': f'sd ({start_year}-{start_year + start_range})'}) series.plot(figsize=(20,5)) plt.xticks(numpy.arange(0,len(series),366)[start_range+1:], (numpy.arange(0, len(series), 366)[start_range+1:] / 366 + start_year).astype(int)) # fix labels plt.show()